输出:Bib Tex | EndNotre
摘要:以拓展和深化区域地下水埋深预测研究为目的,运用随机理论,建立了基于加权马尔科夫链的地下水埋深预测模型,预测内蒙古河套灌区上中下游在未来时段内地下水埋深所处区间值。结果表明:节水改造后灌区中游区的地下水埋深更多的时候处于[2.380, 2.742)区间,下游区的地下水埋深更多的时候处于[2.218, 2.506)区间,这两个区间的数值都低于内蒙古河套灌区的临界地下水埋深2.0 m,在未来的一段时间河套灌区中下游的盐渍化有望进一步减轻。而上游区的地下水埋深更多的时候处于[1.227, 1.727)区间,此区间的数值高于内蒙古河套灌区的临界地下水埋深2.0 m,在未来的时间河套灌区上游是控制地下水埋深的重点区域。
AbstractThis paper taken expanding and deepening the regional prediction research on the groundwater table as the purpose, adopted the random theory to establish the groundwater table prediction model based on the weighted Markov Chain to predict the interval value of groundwater table in the upstream, midstream and downstream of Hetao Irrigation District, Inner Mongolia. The result showed that: After the water saving rehabilitation, the groundwater table in midstream of Irrigation District will be at the interval of 2.380 to 2.742 and the groundwater table in downstream will be at the interval of 2.218 to 2.506. These two interval values are total larger than the critical groundwater dept h of 2.0 m in Hetao Irrigation District, Inner Mongolia. So the salinization in middle and down stream of the Hetao Irrigation District will be expected to further alleviate in future. While the groundwater table in upstream will be at the interval of 1.227 to 1.727. These interval values are total less than 2.0 m which is the critical groundwater depth in the Hetao Irrigation District, Inner Mongolia. Therefore, the upstream of Hetao Irrigation District will be the key control region for groundwater table in future.
Key wordswater-saving rehabilitation groundwater table Markov Chain prediction Hetao Irrigation District
文章编号: 0258_7106 (2016) 01_0018_15 中图分类号: P618.41 文献标志码:A
改回日期:2015_07_11
基金项目
**通讯作者耿新霞, 女, 1979年生, 助理研究员, 成矿规律研究方向。 Email: gen gxinxia@cags.ac.cn
李 彬,史海滨,李 祯,张建国,周 俊.基于权马尔科夫链模型的河套灌区上中下游地下水埋深预测研究[J].杂志名称,2014,21(5):206-212
LI Bin, SHI Hai-bin, LI Zhen, ZHANG Jian-guo, ZHOU Jun.Prediction research on the groundwater table in upstream, midstream and down stream of Hetao Irrigation District based on weighted Markov Chain Model[J].杂志名称,2014,21(5):206-212