输出:Bib Tex | EndNotre
摘要:为了探讨叶面喷施硼(Na2B4O7·10H2O溶液)对马铃薯植株在干旱胁迫下生长发育及抗性的影响及其生理机制,在甘肃省景泰县条山集团马铃薯种植基地,对中度干旱和轻度干旱处理的两垄地,每隔3 m进行一个硼浓度(Na2B4O7·10H2O)喷施处理,浓度依次为0、10、20、30、40、60 g·L-1,每个浓度(3 m长)的喷施量为166.7 ml。结果表明:叶面喷施硼相对增加了干旱胁迫下马铃薯的块茎产量及生物量,使干旱胁迫下叶片含水量和色素含量下降幅度减小;叶面喷施硼还从整体上表现为抗氧化酶活性的提高,并抑制了超氧阴离子产生速率的增加。通过去花与不去花植株生长发育的比较,发现去花后马铃薯植株地上部分重和地下部分重均有所下降,但施硼相对提高了块茎产量及地下部分重。可见,叶面喷施硼能促进马铃薯植株在干旱胁迫下的生长发育,提高其抗旱性及块茎产量,且这种变化可能与其促进光合产物向地下部分输送密切相关。
AbstractThe objective of this work is to elucidate the growth and resistance of potato plants under drought stress and its physiological mechanism by spraying boron (Na2B4O7·10H2O solution), in a test of potato planting site of Tiaoshan Farm of Jingtai County in Gansu Province. Moderate drought and mild drought treatments were performed on two ridge land, every boron concentration per three meter sprayed 166.7 mL Na2B4O7·10H2O, concentration is 0, 10, 20, 30, 40 g·L-1 and 60 g·L-1 in turn. The results showed that boron spraying on the leaves of the plantlets increased the tuber yield and biomass of the plantlets under the drought stress significantly. Spraying boron on the leaves of potato plantlets under the drought stress also elevated the activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT), inhibited the producing rate of ultra oxygen anion, and alleviated the decrease in leaf water content and chlorophyll content. De-florating decreased the biomass aboveground and underground. However, by spaying boron on the leaves, the yield of tuber and biomass of the underground part were improved significantly. The results also showed that boron could promote the growth and development of potato plants under drought stress, enhance drought resistance and the yield of tuber, and these effects may be due to the higher translocation of photosynthetic products to the underground part.
Key wordsboron drought stress potato growth and development resistance physiological mechanism
文章编号: 0258_7106 (2016) 01_0018_15 中图分类号: P618.41 文献标志码:A
改回日期:2015_07_11
基金项目
**通讯作者耿新霞, 女, 1979年生, 助理研究员, 成矿规律研究方向。 Email: gen gxinxia@cags.ac.cn
作者中文名.硼调控干旱胁迫下马铃薯生长发育及抗性的生理机制[J].杂志名称,2014,21(5):67-72
作者英文名.The physiological mechanism of the regulation of boron on the growth and development and resistance of potato plantlets under drought stress[J].杂志名称,2014,21(5):67-72